96 research outputs found

    Cosmic infinity: a dynamical system approach

    Get PDF
    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-forms model. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identify normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.The work of MBL is supported by the Portuguese Agency Fundação para a Ciência e Tecnologia through an Investigador FCT Research contract, with refer- ence IF/01442/2013/ CP1196/CT0001. MBL and JMorais wish to acknowledge the sup- port from the Basque government Grant No. IT592-13 (Spain), FONDOS FEDER under grant FIS2014-57956-P (Spanish government) and the COST Action CA15117 (CANTATA). JMorais is also thankful to UPV/EHU for a PhD fellowship. This research work is supported by the grant UID/MAT/00212/2013.info:eu-repo/semantics/publishedVersio

    Quantum behavior of FRW radiation-filled universes

    Get PDF
    We study the quantum vacuum fluctuations around closed Friedmann-Robertson-Walker (FRW) radiation-filled universes with a nonvanishing cosmological constant. These vacuum fluctuations are represented by a conformally coupled massive scalar field and are treated in the lowest order of perturbation theory. In the semiclassical approximation, the perturbations are governed by differential equations which, properly linearized, become generalized Lame equations. The wave function thus obtained must satisfy appropriate regularity conditions which ensure its finiteness for every field configuration. We apply these results to asymptotically anti-de Sitter Euclidean wormhole spacetimes and show that there is no catastrophic particle creation in the Euclidean region, which would lead to divergences of the wave function

    False vacuum decay in a brane world cosmological model

    Full text link
    The false vacuum decay in a brane world model is studied in this work. We investigate the vacuum decay via the Coleman-de Luccia instanton, derive explicit approximative expressions for the Coleman-de Luccia instanton which is close to a Hawking-Moss instanton and compare the results with those already obtained within Einstein's theory of relativity.Comment: minor changes done, references added, version to appear in GR

    Statefinder parameters for quintom dark energy model

    Full text link
    We perform in this paper a statefinder diagnostic to a dark energy model with two scalar fields, called "quintom", where one of the scalar fields has a canonical kinetic energy term and the other has a negative one. Several kinds of potentials are discussed. Our results show that the statefinder diagnostic can differentiate quintom model with other dark energy models.Comment: 11 pages, including 8 figures, added reference

    Cosmological braneworld solutions with bulk scalar field in DGP setup

    Full text link
    We study cosmological dynamics of a canonical bulk scalar field in the DGP setup within a superpotential approach. We show that the normal branch of this DGP-inspired model realizes a late-time de Sitter expansion on the brane. We extend this study to the case that the bulk contains a phantom scalar field. Our detailed study in the supergravity-style analysis reveals some yet unexplored aspects of cosmological dynamics of bulk scalar field in the normal DGP setup. Some clarifying examples along with numerical analysis of the model parameter space are presented in each case.Comment: 29 pages, 12 figs, accepted for publication in Astroparticle Physic

    Non linear equation of state and effective phantom divide in brane models

    Full text link
    Here, DGP model of brane-gravity is analyzed and compared with the standard general relativity and Randall-Sundrum cases using non-linear equation of state. Phantom fluid is known to violate the weak energy condition. In this paper, it is found that this characteristic of phantom energy is affected drastically by the negative brane-tension λ\lambda of the RS-II model. It is found that in DGP model strong energy condition(SEC) is always violated and the universe accelerates only where as in RS-II model even SEC is not violated for 1<ρ/λ<21 < \rho/\lambda < 2 and the universe decelerates

    Astronomical bounds on future big freeze singularity

    Full text link
    Recently it was found that dark energy in the form of phantom generalized Chaplygin gas may lead to a new form of the cosmic doomsday, the big freeze singularity. Like the big rip singularity, the big freeze singularity would also take place at a finite future cosmic time, but unlike the big rip singularity it happens for a finite scale factor.Our goal is to test if a universe filled with phantom generalized Chaplygin gas can conform to the data of astronomical observations. We shall see that if the universe is only filled with generalized phantom Chaplygin gas with equation of state p=c2s2/ραp=-c^2s^2/\rho^{\alpha} with α<1\alpha<-1, then such a model cannot be matched to the data of astronomical observations. To construct matched models one actually need to add dark matter. This procedure results in cosmological scenarios which do not contradict the data of astronomical observations and allows one to estimate how long we are now from the future big freeze doomsday.Comment: 8 page
    corecore